Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc
نویسندگان
چکیده
Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior-posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial "overshoot" of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression.
منابع مشابه
The Transcription Factor Optomotor-Blind Antagonizes Drosophila Haltere Growth by Repressing Decapentaplegic and Hedgehog Targets
In Drosophila, decapentaplegic, which codes for a secreted signaling molecule, is activated by the Hedgehog signaling pathway at the anteroposterior compartment border of the two dorsal primordia; the wing and the haltere imaginal discs. In the wing disc, Decapentaplegic and Hedgehog signaling targets are implicated in cell proliferation and cell survival. However, most of their known targets i...
متن کاملThe T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila
Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expre...
متن کاملIndependent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failu...
متن کاملSignaling interactions between squamous and columnar epithelia of the Drosophila wing disc.
Understanding the interactions between distinct epithelial cells would help us to understand the development of tissues. Drosophila imaginal discs, which are made up of two types of epithelial cells, provide good model systems for such studies. The disc proper or the columnar epithelial cells are apposed to a layer of squamous epithelial cells (the peripodial membrane). We have examined organiz...
متن کاملDev116715 1502..1515
Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinaseand phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases th...
متن کامل